欢迎来到万博品牌(北京)管理咨询有限公司!
方差分析
2015-07-22

方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。
方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
(2) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作SSb,组间自由度dfb。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
我们通常使用的SPC控制图,测量系统分析中的方差分析法都是方差分析的实际应用。
方差分析的应用条件是:
应用条件:
1. 各样本是相互独立的随机样本
2. 各样本均来自正态分布总体
3. 各样本的总体方差相等,即具有方差齐性
4.在不满足正态性时可以用非参数检验[1

 

北京总部 电话:010-57133396 邮箱:training@win-starcn.com 地址:北京市海淀区花园东路30号花园饭店5405室 
 
版权所有 © 万博品牌(北京)管理咨询有限公司 京ICP备11033257号